

... 本書係根據教育部公布之「國民教育階段九年一貫課程總綱」之化學部分,銜接高一基礎化學(全)所編撰的教材。

國中化學教材,偏重現象的觀察,藉由觀察的結果取得相關的知識,因此進入高中後,面對原理、應用以及量的計算能力明顯不足。希望學生藉由此教材,在短期內復習國中所學,了解國中教材與高中基礎化學之間的差異,以作為學習高一基礎化學(全)之基礎。本教材的內容共分五單元,每單元的用意如下:

單元一:認識物質

藉由物質的介紹喚起學生的印象,並利用整理表格模式,讓學生確認 是否真的了解物性與化性之間的差異。

單元二:原子世界與週期表

由原子結構和週期表的發展史之介紹,使學生了解原子結構及週期表是由多次實驗結果推論而得的,讓學生了解化學是一門著重實驗的科學。

單元三:分子式與化學方程式

藉分子式及平衡讓學生了解文字敘述與化學方程式之差異,且平衡化學方程式也是日後化學計量的基礎。

單元四:化學計量

為免除現階段學生對計算題充滿恐懼,藉由五大定律、化學計量的課程安排,讓學生知道計算題只要定理熟記,就很容易解題,藉此增加學生對計算的信心。

單元五:溶 液

藉由溶液的分類,引導學生了解高中課程係由現象的觀察來區分溶液的種類;進一步的介紹電解質溶液、了解電解質的強弱,並介紹濃度的換算,免除學生對計算題的恐懼。

每單元均有重點、範例以及練習題,希望學生能藉由此練習增強學習效果。

如有未盡妥善之處,尚祈各位先進及讀者隨時提供意見,以作為修訂之時 的參考。

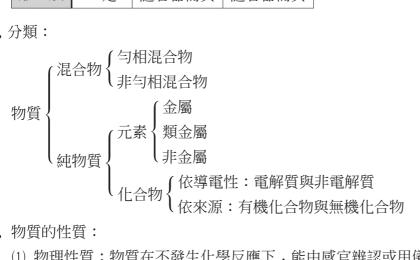
編者 敬上

單元一	認識物質 3
單元二	原子世界與週期表 5
單元三	分子式與化學方程式 10
單元四	化學計量14
單元五	溶 液24

單元一 認識物質

6) chemistry

1. 物質:具有質量,占有空間。


可由感官察覺存在的東西。例如:空氣、水、玻璃、鐵……等。

一般指物質為:25°C、1大氣壓下的相態。

2. 物質的三態:

		固	態	液	態	氣	態
體	積	_	定	<u></u>	定	隨容器	異而器
形	狀	_	定	隨容器	発而異	隨容器	異而器

3. 分類:

4. 物質的性質:

(1) 物理性質:物質在不發生化學反應下,能由感官辨認或用儀器量度的性質。

例如:顏色、沸點、熔點、密度、溶解度……等。

(2) 化學性質:物質發生化學反應,所表現出的特性。

例如:可燃性、助燃性、氧化力、還原力……等。

5. 物質的變化:

種類	物理變化	化學變化	
	形態改變、組成不變	形態與組成均變	
	沒有新物質的產生	原子重組、可產生新物質	
性質	可恢復原狀	多數不能恢復原狀	
性貝	屬於暫時變化	屬於永久變化	
	能量變化小於 100 kJ / mol	能量變化介於 $10^2 \sim 10^3 kJ / mol$	
	原子與分子數不變	原子數不變、分子數可能會變	
例如	三態變化、燈泡發光、糖溶於水	電解、燃燒、光合作用、鐵生鏽	

◎ 4 • 化學銜接教材

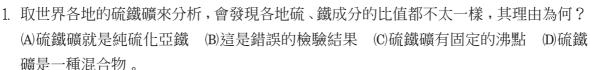
範例 (1)-

某白色固體有一定的熔點,強熱時得無色氣體及黑色殘留物,則此固體為(A)混合物(B)化合物(C)元素(D)可能為混合物,也可能為化合物。

解答:(B)

解析:有一定的熔點表示為純物質,可用加熱再分解表示屬於化合物。

範例 2—


建達一大早起床,想替自己準備早餐,先於瓦斯爐上放鍋子,鍋子內加水,然後打開瓦斯爐①使瓦斯燃燒,藉以②加熱鍋中的水,直到③水沸騰為止。然後想將熱水倒入玻璃杯中,一個分神④將玻璃杯打碎了。整理乾淨後,再倒另一杯熱水,加入糖,使⑤糖溶於熱水中,再加入奶粉泡一杯香氣四溢的牛奶。接著發現肚子還是很餓,於是再⑥煎個荷包蛋來填飽肚子;吃完早餐後,⑦食物在胃中消化轉變成能量,於是精神飽滿的去上學。

上面的敘述中,屬於物理變化的有: ;屬於化學變化的有: 。

解答:物理變化:②、③、4、5;化學變化:①、6、7

練習題

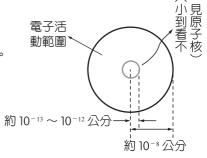
- 2. 下列哪一過程屬於化學變化? (A)冰塊在常溫下逐漸熔化為水 (B)試管中的碘固體受熱變成紫色蒸氣 (C)藍墨水經由
 - A) 水塊在常温下逐漸熔化為水 (B) 試官中的碘固體受熱變放素色蒸氣 (C) 監墨水經出蒸餾,分離出無色的液體 (D) 澄清石灰水通入二氧化碳會變混濁白色。
- 3. 有 A、B、C、D 四杯液體, A 與 B 都是無色透明; C 是紅色; D 是混濁白色。A 置於蒸發皿中蒸乾後,並無任何殘餘物; B 置於蒸發皿中蒸乾後,皿上留有白色固體; C 置於蒸發皿中蒸乾後,皿上留有紅色固體。試問 A、B、C、D 中,何者可能為純物質? **2**
- 4. 方糖放入水中時會冒出一些小氣泡是因為 (A)起了化學變化 (B)其化學性質改變 (C)糖溶於水特有的現象 (D)方糖孔隙含難溶於水的空氣。

解答Answer

單元二 原子世界與週期表

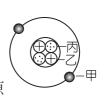
一、原子結構

1. 原子結構的發展過程:


- (1) 19 世紀英國道耳頓認為原子是構成物質的最小粒子,不能再分割。
- (2) 1879 年英國克魯克斯發現陰極射線。
- (3) 1897 年湯姆森由陰極射線實驗推斷電子為原子所含的基本粒子。
- (4) 1909 年密立坎做油滴實驗測定電子電荷,計算出電子的質量。
- (5) 1911 年拉塞福用 α 粒子散射實驗,建立原子模型。
- (6) 1919 年拉塞福用 α 粒子撞擊氮原子得質子。
- (7) 1932 年查兌克用 α 粒子撞擊鈹原子發現中子。

2. 拉塞福核原子模型:

- (1) 原子核由帶正電的質子與不帶電的中子所組成。
- (2) 核外有帶負電的電子。電子受原子核正電的吸引,環繞著原子核運動,有如行星繞太陽運動一般。


3. 原子構造:

- (1) 原子半徑:原子核半徑= $1:10^{-5}\sim10^{-4}$
- (2) 原子核的質量大約等於原子的質量。
- (3) 質子:中子:電子三者的質量比約為 \Rightarrow 1:1: $\frac{1}{1840}$

範例 1

右圖為某原子的模型圖(未按實際比例繪製),乙粒子和丙粒子在原子核內,其中乙粒子帶正電,下列有關該原子的敘述,何者<u>錯誤</u>? (A)該原子的原子序為 2 (B)甲粒子不帶電,而丙粒子,帶負電 (C)一個乙粒子的質量與一個丙粒子的質量非常接近 (D)該原子的質量約等於原子核內乙粒子與丙粒子的總質量。

解答:(B)

解析:甲帶負電,丙不帶電。

二、元素符號表示法

AX 質量數 元素符號

- 1. A=元素的質量數=質子數+中子數=原子量接近整數的部分。
- 2. Z=元素的原子序=核內的質子數=核外的電子數。

◎ 6 • 化學銜接教材

3. A-Z=核內的中子數。

範例 2)—

鈷六十(原子序=27)可作為放射性治療用,有關鈷六十的原子結構,何者正確? (A)有 27 個電子 (B)有 60 個中子 (C) Co^{3+} 有 30 個中子 (D) Co^{3+} 有 33 個質子 。

解答:(A)

解析:原子序=27,表示中性狀態時,質子數=27=中子核外的電子數

中子數=60-27=33

 Co^{3+} : 質子數=27,中子數=33,電子數=24

· 範例(3)—

某元素 M 與氧形成的離子 MO_2^+ 共有電子 108 個,則質量數為 239 的元素 M 之原子 核中含有中子若干個?

(A) 93 (B) 146 (C) 148 (D) 162 .

解答:(B)

解析:由 MO_2^+ 電子數推知,M 的原子序為 108+1-16=93

所以中子數=質量數-原子序=239-93=146

三、週期表

1. 週期表的發展:

- (1) 19 世紀初期, 化學家發現元素的原子量和其性質間有某種關係。
- ② 1871年,門得列夫依原子量排週期表。

包含當時發現的63種元素,並預測新元素的存在。例如:鈧、鎵、鍺。

例外:碲與碘並沒有按原子量大小排列,而考慮到元素性質的相似性。

③ 1913年,莫斯利依原子序排週期表。

<u>其</u>斯利利用陰極射線撞擊金屬產生 X 射線,發現放出的 X 射線之頻率,與週期表中元素所在位置的順序有關。認為順序應與原子核內的正電荷多寡有關。後經證實:元素的性質由原子序而非由原子量決定。

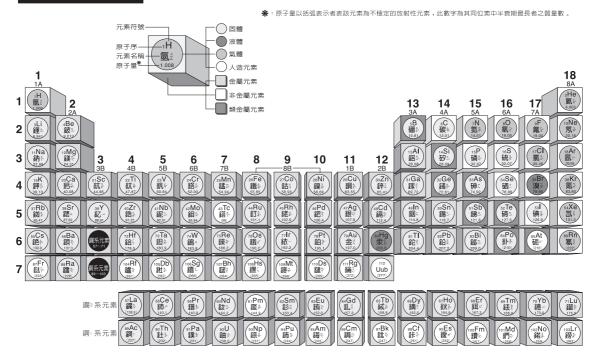
2. 現今週期表:

- (1) 依原子序排列,共七横列,十八縱行;每一縱行稱為一族,每一横列稱為一週期。
 - ① 習慣將族分為 A 族與 B 族:A 族元素為典型元素,共八族;B 族元素為過渡元素,共八族。
 - ② IUPAC 已廢除 A、B 兩族分法,改將週期表由左而右分為十八族,然而國、高中大部分仍採舊式。

③ 目前有七個週期:

第一週期含有氫、氦等2個元素。

第二週期含有鋰、鈹、硼、碳、氮、氧、氟、氖等8個元素。


第三週期含有鈉、鎂、鋁、矽、磷、硫、氯、氫等8個元素。

第四、五週期含有18個元素。

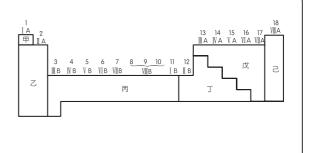
第六週期含有32個元素。

第七週期尚未填滿,若填滿應有32個元素。

元素週期表

(2) 應用:

- ① 週期表右上角為非金屬元素,左方及中間部分為金屬元素。金屬與非金屬交界 地方為類金屬元素。例如:硼、矽、鍺、砷。
- ② 愈左邊的元素,金屬性愈強、鹼性愈強;愈右邊的元素,非金屬性愈強、酸性愈強。
- ③ 1A 族(Li、Na、K、Rb、Cs、Fr)愈下面的元素,半徑愈大、愈易失去電子、活性愈大、鹼性愈強。
- ④ 7A 族鹵素(F、Cl、Br、I、At)愈上面的元素,半徑愈小、愈易得到電子、活性愈大。

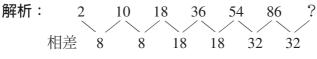

◎ 8 • 化學銜接教材

範例4

右圖是按元素特性區分的週期表,許多的 類金屬元素因性質介於金屬與非金屬之 間,故可作為半導體電子材料,這些元素 在週期表中都分布在何處?

(A) 乙、丙區域之間 (B) 丙、丁區域之間

(C)丁、戊區域之間 (D)乙、丁區域之間。


解答:(C)

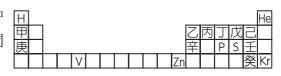
• 範例 (5)-

已知惰性氣體的原子序依次為:2、10、18、36、54、86,試依此推算週期表第七週 期惰性氣體之原子序為

(A) 114 (B) 116 (C) 118 (D) 120 。

解答:(C)

所以86+32=118


練 習 題

- 1. 粒子由小到大排列為下列何者? (A)電子→分子→晶體 (B)分子→晶體→電子 (C)分子→電子→晶體 (D)電子→晶體→ 分子。
- 2. 下列有關原子結構的敘述,何者錯誤? (A)某一元素原子核內的質子數目,即為該元素的原子序 (B)由某一元素原子中質子與 中子的數目,可約略決定該元素的原子量 (C)原子核本身是不帶電的 (D)原子序 6 的 中性原子含有6個電子。

3. 下列有關原子結構的敘述,何種組合完全正確? (甲原子質量均勻分布於整個原子之中; (乙)中性原子之質子數和電子數相等; (內質子質量為電子質量的 1840 倍; (丁)原子核中所含質子數一定和中子數目相同

 $(A)(\mathbb{H})(Z) \qquad (B)(Z)(\mathbb{H}) \qquad (C)(\mathbb{H})(\mathbb{T}) \qquad (D)(\mathbb{H})(\mathbb{H}) \qquad (E)(Z)(\mathbb{T}) \ \ .$

- 4. 理論上我們可以預測在鹼金屬中, 盆元素(原子序=87)之下應可找到第八列的鹼金屬, 其原子序應為若干?
 - (A) 122 (B) 119 (C) 109 (D) 105 o
- 5. 右表是元素週期表的一部分:關於週期表中標示「甲」~「癸」之元素,回答下列問題:

- (1) 上述元素中活性最大的非金屬元素為。
- (2) 舊制週期表元素有 A 族、B 族之區別, IUPAC 建議予以廢除, 而將現行週期表元素分為十八族, 則「丙」元素為第 族。
- 6. 關於原子結構敘述,何者正確?

(A)原子核內的中子數必須與質子數相等,原子才能保持電中性 (B)原子核帶正電 (C) 質子和電子的總質量約等於原子的總質量 (D)原子核內的中子數須與核外電子數相等,原子才會保持電中性。

1. (A) 2. (C) 3. (B) 4. (B) 5. (1) \rightleftharpoons (2) 14 6. (B)

◦ 單元三 分子式與化學方程式 © chemistry

一、分子式

1. 定義:表示物質分子的組成。即表達一個分子中所含原子的種類與數目。

例如:一個 Fe_2O_3 中,含有2個鐵原子、3個氧原子。

2. 常見的價數:

	正 (陽)離子	負 (陰) 離子		
一價	H ⁺ :氫離子、NH ₄ ⁺ :銨根離子 Na ⁺ :鈉離子、K ⁺ :鉀離子 Ag ⁺ :銀離子、Cu ⁺ :亞銅離子	F ⁻ : 氟離子、Cl ⁻ : 氯離子 Br ⁻ : 溴離子、I ⁻ : 碘離子 OH ⁻ : 氫氧根離子、NO ₃ ⁻ : 硝酸根離子 CH ₃ COO ⁻ : 醋酸根離子		
二價	Mg ²⁺ : 鎂離子、Ca ²⁺ : 鈣離子 Ba ²⁺ : 鋇離子、Cu ²⁺ : 銅離子 Zn ²⁺ : 鋅離子、Fe ²⁺ : 亞鐵離子	CO_3^{2-} :碳酸根離子、 O^{2-} :氧離子 SO_4^{2-} :硫酸根離子、 SO_3^{2-} :亞硫酸根離子 CrO_4^{2-} :鉻酸根離子		
其他	Al ³⁺ :鋁離子、Fe ³⁺ :鐵離子 Ni ³⁺ :鎳離子、Au ³⁺ :金離子 Sn ⁴⁺ :錫離子	PO ₄ ³⁻ :磷酸根離子		

3. 寫法:

(1) 帶正電(例如:氫、金屬、銨根)的離子寫在前面,帶負電的離子寫在後面。

(2) 電中性化合物的正、負離子總電荷數要相同。

(3) 有 2 個或 2 個以上的原子,數字寫在原子的右下角,若為離子記得括號起來。

範例 7)—

寫出下列之化學式或中文名稱:

硝酸	(1)	硫酸	(2)	碳酸	(3)
磷酸	(4)	氫氧化銨	(5)	氫氧化鈉	(6)
氫氧化鈣	(7)	碳酸鈉	(8)	碳酸鈣	(9)
溴化銀	(10)	硝酸銀	(11)	硫酸鋇	(12)
硫酸銨	(13)	硝酸鉀	(14)	硝酸鈉	(15)
氯化鈉	(16)	硫酸鈣	(17)	碳酸氫鈉	(18)
過氧化氫	(19)	二氧化錳	(20)	氨	(21)
氧化鈣	(22)	氧化鎂 (23)		氧化鋁	(24)
氧化銅	(25)	氧化亞銅	(26)	二氧化硫	(27)

解答:(1) HNO_3 (2) H_2SO_4 (3) H_2CO_3 (4) H_3PO_4 (5) NH_4OH (6) NaOH (7) $Ca(OH)_2$

(8) Na₂CO₃ (9) CaCO₃ (10) AgBr (11) AgNO₃ (12) BaSO₄ (13) (NH₄)₂SO₄

(14) KNO₃ (15) NaNO₃ (16) NaCl (17) CaSO₄ (18) NaHCO₃ (19) H₂O₂ (20) MnO₂

(21) NH₃ (22) CaO (23) MgO (24) Al₂O₃ (25) CuO (26) Cu₂O (27) SO₂

二、化學反應表示法

1. 定義:用化學式和一些符號來表示物質所發生的化學反應。

2. 原理:質量守恆、道耳頓原子說、電荷不滅。

3. 依據:實驗結果,不能憑空杜撰。

4. 寫法:

	步	驟	鎂燃燒產生氧化鎂
(1)	先查出反應物與產物的名稱及	/L <u>國一</u>	反應物:鎂和氧
(1)	<u> </u>	化学式	產物:氧化鎂
(2)	將反應物列在箭號 (→) 的左	端,產物列在箭號的右	Mato Mao
	端		$Mg + O_2 \rightarrow MgO$
(3)	根據質量守恆定律,調整各化	學式前的係數,使箭號	
	兩端原子數目相同,分數不適	合當係數,記得將分數	$2Mg + O_2 \rightarrow 2MgO$
	變為整數		
(4)	若有變化時,有一定的條件如	溫度、壓力或用催化劑	\wedge
	等,在箭號上方註明		$2Mg + O_2 \xrightarrow{\triangle} 2MgO$

5. 功用:

- (1) 表示反應物、產物的種類,以及參與反應的原子種類。
- (2) 表示反應物的消耗量、產物的產量、質量守恆(原子不滅)。
- (3) 反應進行的方向。
- (4) 有關物質的莫耳數比、分子數比及反應前後物質的質量關係(定比定律)。
- (5) 若反應物及產物均為氣體時,尚可表示彼此間的體積關係。
- 6. 由方程式無法得知的資料:

反應機構、反應速率的快慢與反應達成平衡所需的時間。

- 範例 2 ----

平衡下列方程式:

(1) _____
$$N_2$$
+ ____ H_2 鐵粉, $400\,^{\circ}$ C, $200\,$ atm ____ NH_3 。

(2)
$$_$$
 CH₃OH+ $_$ O₂ \rightarrow $_$ CO₂+ $_$ H₂O \circ

(3)
$$_{----}C_3H_8+_{----}O_2 \rightarrow _{----}CO_2+_{----}H_2O$$
 .

◎ 12 • 化學銜接教材

(6) _____
$$P_4 +$$
 ____ $NaOH +$ ____ $H_2O \rightarrow$ ____ $PH_3 +$ ____ NaH_2PO_2 .

(7)
$$Mg(NO_3)_2 + K_2SO_4 \rightarrow MgSO_4 + KNO_3$$
.

$$(8) \hspace{1cm} C_6 H_{12} O_6 + \hspace{1cm} O_2 \rightarrow \hspace{1cm} CO_2 + \hspace{1cm} H_2 O \ .$$

解答: (1) 1, 3, 2 (2) 2, 3, 2, 4 (3) 1, 5, 3, 4 (4) 2, 1, 1, 2 (5) 1, 2, 1, 1,

1 (6) 1, 3, 3, 1, 3 (7) 1, 1, 1, 2 (8) 1, 6, 6, 6

三、化學方程式的類型

1. 化合反應:

- (1) 由兩種或兩種以上的物質生成另一種物質的反應。
- (2) 例如:NH₃+HCl→NH₄Cl。

2. 分解反應:

- (1) 由一種物質分解產生兩種或兩種以上其他物質的反應。
- (2) 例如: $2KClO_3 \xrightarrow{\triangle} 2KCl + 3O_2$ 。

3. 取代反應(置換反應):

- (1) 由一種單質與一種化合物起反應,生成另一種單質和另一種化合物的反應。
- (2) 例如: Zn+H₂SO₄→ZnSO₄+H₂。

4. 複分解反應:

- (1) 由兩種化合物互相交換成分,生成另兩種化合物的反應。
- (2) 例如: Cu(OH),+2HCl→CuCl,+2H,O。

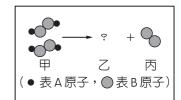
範例 3----

試判斷下列反應的類型:

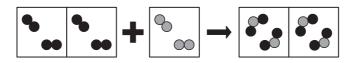
- (1) HCl+NaOH→NaCl+H₂O,屬於_____反應。
- (2) $SO_2 + H_2O \rightarrow H_2SO_3$,屬於 反應。
- (3) 3C+2Fe₂O₃→4Fe+3CO₂,屬於 反應。

解答:(1)複分解反應 (2)化合反應 (3)取代反應

練習題


胃酸過多的病人服用含氫氧化鋁治療,發生的反應為:
 3HCl+Al(OH)₃→AlCl₃+3H₂O屬於何種反應?
 (A)化合(B)分解(C)取代(D)複分解。

- 2. 設 $X \setminus Y \setminus Z$ 分別代表三種相異之元素,若下列為已平衡之化學方程式: $XZ_2 + 2Y \rightarrow 2 + X$,則依據道耳頓之原子說,甲的化學式為下列何者?
 - (A) YZ (B) YZ_2 (C) Y_2Z (D) Y_2Z_2 .
- 3. 燃燒反應: C₂H₆+xO₂→yCO₂+zH₂O,則


(A)
$$x = \frac{3}{2}$$
, $y=4$, $z=5$ (B) $x = \frac{7}{2}$, $y=2$, $z=3$ (C) $x = \frac{5}{2}$, $y=1$, $z=4$

(D)
$$x = \frac{9}{2}$$
, $y = 2$, $z = 3$.

- 4. 定溫下之氣相反應,就反應物與產物而言,反應前後下列何項<u>不會</u>改變? (A)分子總數 (B)氣體體積 (C)氣體總壓 (D)原子總數。
- 5. 在下列反應中, $CaCO_3+2HCl \rightarrow CaCl_2+CO_2+H_2O$,若有 30 個氯原子參與反應,則 生成物中含有多少個氯原子。**睯**:
- 6. 如右圖所示,二分子的甲反應生成二分子的乙與一分子的 丙,已知甲、乙、丙三者為不同的純物質,則乙物質的分 子式為下列何項?

- (A) A_2 (B) AB_2 (C) A_2B (D) A_4B_2 \circ
- 7. 下圖所代表的反應可用哪一個方程式表示?
 - (A) $2\text{CO} + \text{O}_2 \rightarrow 2\text{CO}_2$ (B) $2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O}$ (C) $2\text{Mg} + \text{O}_2 \rightarrow 2\text{MgO}$ (D) $2\text{Cu} + \text{O}_2 \rightarrow 2\text{CuO}_3$

- 8. 某化學方程式: $2A+B \rightarrow 2R$,今有 a 克的 A,恰與 b 克的 B 完全反應,生成 r 克的 R, 則下列何者正確?
 - (A) 2a+b=2r (B) a+b=r (C) $\frac{a}{2}+b=\frac{c}{2}$ (D) a+b=2r .
- 9. $xCa_3(PO_4)_2 + yC + zSiO_2 \rightarrow uCaSiO_3 + vCO + wP_4$,則 (A) x + y + z = u + v + w (B) x + y + 2z = u + v + w (C) 3x + y + z = u + v + 6w (D) x + 2w + y = u + v。

解答Answer

1. (D) 2. (A) 3. (B) 4. (D) 5. 30 6. (C) 7. (B) 8. (B) 9. (C)

單元四 化學計量

一、五大基本定律

1. 質量守恆:

(1) 內容: 化學反應前後,物質質量總和不變。

(2) 例如:硫酸鈉與氯化鋇混合,在同一密閉容器中反應,反應前、後質量不變。

範例 11—

已知 $3A+2B \rightarrow 2C$,A、B、C 表不同氣體分子,若 A、C 之分子量為 24 及 72,則 B 的分子量為若干?

解答:36

解析:利用質量守恆: $24\times3+2M_B=2\times72$,得 $M_B=36$

2. 定比定律:

(1) 一化合物無論如何製得,其組成的元素間,都有一定的質量比。

(2) 不論用什麼方法或原料所製得的甲烷,分析它所含的碳氫質量,其比總是為3:1。

範例 2

下列何者可說明定比定律?

(A)碳燃燒生成 CO 與 CO_2 (B)水分子中氫原子與氧原子的質量比固定為 1:8 (C)碳酸與碳酸鈣均含有鈣原子 (D)氧與臭氧之分子量比為 2:3 。

解答:(B)

解析:化合物之成分元素的質量間有一定的比例。

3. 倍比定律:

兩元素構成兩種或兩種以上的化合物時,其一元素的質量固定時,另一元素的質量成簡單整數比。

範例 3—

下列哪一組化合物,不能以倍比定律說明?

(A)氧及臭氧 (B)一氧化碳及二氧化碳 (C)水及過氧化氫 (D)一氧化氮及二氧化氮。

解答:(A)

解析:(A) 同素異形體。

4. 氣體反應體積定律:

- (1) 同溫、同壓氣體反應,各氣體反應物與生成物的體積間成簡單的整數比。
- (2) 只適用於氣體的反應。

範例 4)—

在同溫、同壓下,下列敘述何者錯誤?

(A) H_{2(g)} + Cl_{2(g)} → 2HCl_(g) , 體積比=1:1:2 (B) 3H_{2(g)} + N_{2(g)} → 2NH_{3(g)} , 體積比=3:1:2

(C) $2NO_{2(g)} \rightarrow N_2O_{4(g)}$,體積比=2:1 (D) $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(2)}$,體積比=2:1:2 。

解答:(D)

解析: (D) H₂O_€ 非氣體。

5. 亞佛加厥定律:

- (1) 同溫、同壓、同體積的任何氣體含有相同的分子數。
- (2) 推廣:
 - ① 同溫、同壓下的氣體反應,體積比=分子數比=莫耳數比。
 - ② 同溫、同壓、同體積時,莫耳數相同,可藉此求出氣體的分子量。

範例(5)-

同溫、同壓下等體積的一氧化碳與二氧化碳的敘述,何者正確?

(A)質量相同 (B)密度相同 (C)所含分子數相同 (D)所含原子數相同。

解答:(C)

解析:同溫、同壓、同體積,分子數相同 ::選(C)

二、原子量與分子量

1. 原子量:

- (1) 因原子的質量太小,無法直接測得,故取一定量的某元素當標準,再求出其他各元素等量下,和此元素的相對質量比值,即得各元素的原子量。
- (2) 1961 年國際純化學暨應用化學聯合會(IUPAC)規定以 12 C=12.0000 為標準。
- (3) 原子量是原子質量間的比值,因此沒有單位。
- (4) IUPAC 於 1961 年規定以一個 12 C 原子質量的 $\frac{1}{12}$ 為原子質量單位。

① 1 amu=
$$\frac{1}{12} \times \frac{12 \text{ g/mol}}{N_0} = 1.66 \times 10^{-24} \text{ (克)}$$

② 原子量為
$$M$$
,一個原子重: $\frac{M}{N_0}$ 克 / 個= M amu

◎ 16 • 化學銜接教材

- ③ 1 克= N_0 amu= 6.02×10^{23} amu
- (5) 平均原子量:
 - ① 考慮同位素的存在,以平均分子量表示。
 - ② $\overline{M} = M_1X_1 + M_2X_2 + M_3X_3 + \cdots$

/M_i:該元素的同位素質量

X_i:該元素的相對存量百分比

範例 6

等數目的 ¹²C 原子與某未知原子進行質量測定,得兩者的質量分別為 18.0 克與 36.0 克,則該未知原子之原子量為

(A) 18 (B) 24 (C) 36 (D) 42 .

解答:(B)

解析: $\frac{18}{12} = \frac{36}{M}$, 得 M=24

範例 7

自然界中存有氖—20 和氖—22,氖的平均原子量為 20.2,由此推知氖—22 在自然界中含量約為

(A) 1% (B) 5% (C) 10% (D) 20% .

解答:(C)

解析: 20(1-x)+22x=20.2 □ x=0.1=10%

2. 分子量:

- (1) 分子量是分子中所含原子的原子量總和;即可由一分子所含原子種類、數目及原子量計算出分子量。
- (2) 分子量也是相對的質量比值,所以分子量也沒有單位。

範例8—

某一直鏈烴,其蒸氣的密度為同溫、同壓下氧密度的 2.25 倍,則此烴可能為何者? (A) C_3H_8 (B) C_4H_8 (C) C_4H_6 (D) C_5H_{12} 。

解答:(D)

解析:同溫、同壓下,密度正比於分子量

∴某氣體的分子量=32×2.25=72

分子量:(A) 42;(B) 56;(C) 54;(D) 72

∴選(D)

三、莫耳 (mole)

- 1. 莫耳在科學上是用來表示粒子數量的單位。
- 2. 1 莫耳=6.02×10²³ 個粒子數,此數值稱為亞佛加厥數。
- **3.** 莫耳可用於原子、分子或離子的計量。例如:1 莫耳的 SO_4^{2-} 表示含有 6.02×10^{23} 個硫酸根離子。

(1) 原子莫耳數=
$$\frac{重量}{原子量} = \frac{原子個數}{6.02 \times 10^{23}}$$

(2) 分子莫耳數=
$$\frac{重量}{分子量} = \frac{分子個數}{6.02 \times 10^{23}}$$

- **4.** 克原子:1 莫耳原子的質量以克數表示,稱為 1 克原子。例如:1 克原子 12 C 即一莫耳 12 C 原子,質量為 12 克。
 - (1) 克原子數=原子的莫耳數

(2) 原子莫耳數=
$$\frac{原子質量}{克原子量} = \frac{原子的粒子數}{6.02 \times 10^{23}} =$$
克原子數

- 5. 克分子:1 莫耳分子的質量以克數表示,稱為1克分子。
 - (1) 克分子數=分子的莫耳數

(2) 分子莫耳數=
$$\frac{分子質量}{克分子量} = \frac{分子的粒子數}{6.02 \times 10^{23}} = 克分子數$$

年 在	/Eil	
4世ピ	עעו	Y

已知氧、鉀、錳三元素的原子量依序為 16、39、55, 試回答下列問題:

- (1) 過錳酸鉀化學式為____。
- (2) 1 莫耳過錳酸鉀有_____克。
- (3) 237 克的過錳酸鉀有________ 莫耳氧原子; 共有______ 個原子。

解答:(1) KMnO₄ (2) 158 (3) 6; 5.42×10^{24}

解析:(1) 過錳酸鉀化學式為 KMnO4。

- (2) 1 莫耳重為分子量,所以為 39+55+16×4=158(克)
- (3) $\frac{237}{158}$ = 1.5, 1 莫耳過錳酸鉀含有 4 莫耳氧原子 \therefore 1.5×4=6(莫耳)氧原子
 - 1個 KMnO₄ 分子含有 6個原子
 - \therefore 1 莫耳過錳酸鉀共含有 $6.02 \times 10^{23} \times 6 = 3.61 \times 10^{24}$ (個) 原子則 1.5 莫耳共含有 $3.61 \times 10^{24} \times 1.5 = 5.42 \times 10^{24}$ (個) 原子

◎ 18 • 化學銜接教材

範例 100-

葡萄糖 36.0 克,所含氧原子的莫耳數為若干? (原子量: C=12, H=1, O=16)

解答:1.2

解析:葡萄糖化學式為 C₆H₁,O₆ :.1 個葡萄糖分子含 6 個氧原子

$$\frac{36}{180} \times 6 = 1.2$$

範例 11)

取某化合物 16 克,其分子總數為 3.01×10²³ 個,則該化合物的分子量為若干?

解答:32

解析:
$$\frac{16}{M} = \frac{3.01 \times 10^{23}}{6.02 \times 10^{23}}$$
, 得 M=32

範例 12)—

下列何者的質量最大?

(A) 2 個水分子 (B) 32 amu (C)氫氣的克分子數為 1.0×10^{-23} (D) 5.0×10^{-23} 克金原子。

解答:(A)

解析:(A)
$$2 \times \frac{18}{6.02 \times 10^{23}} = 5.98 \times 10^{-23}$$
 (克)

(B)
$$\frac{32}{6.02 \times 10^{23}} = 5.31 \times 10^{-23}$$
 (克)

(C)
$$1.0 \times 10^{-23} \times 2 = 2.0 \times 10^{-23}$$
 (克)

6. 氣體的莫耳體積:

(1) 標準溫壓(STP): 1 大氣壓、0 °C 下,1 莫耳氣體的體積為 22.4 升。

(2) 常溫常壓 (NTP): 1 大氣壓、25°C下,1 莫耳氣體的體積為24.5升。

範例(13)-

在 0 °C、1 atm , 某氣體 0.625 克、體積為 0.5 升 , 此氣體是

(A) N, (B) CO, (C) O, (D) Cl, 。(原子量: C=12, N=14, O=16, Cl=35.5)

解答:(A)

解析:
$$\frac{0.625}{0.5}$$
 × 22.4=28 ∴ 選(A)

7. 亞佛加厥定律的應用——求氣體的分子量:

(1) 條件:同溫、同壓下,同體積的氣體含有相同的分子數(莫耳數)。

(2) 公式:
$$\frac{W_1}{M_1} = \frac{W_2}{M_2}$$

(3) 推廣:同溫、同壓下,氣體的體積正比於分子數(莫耳數)。

範例 14)—

同溫、同壓、同體積下的氫氣和某氣體,已知氫氣的重量為8克,某氣體的重量為128克,則某氣體的分子量為若干?

解答:32

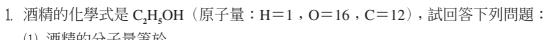
解析:同T、P、V, 莫耳數相同

$$\frac{8}{2} = \frac{128}{$$
某氣體分子量

得此氣體的分子量=32

範例 (15)———

同溫、同壓、同體積下的甲、乙兩種氣體的質量比為 17:14,若乙氣體是 CO,則甲氣體可能是下列何者?(原子量:S=32,N=14,Cl=35.5)


(A) C1, (B) HC1 (C) NH, (D) H,S .

解答:(D)

解析:同T、P、V, 莫耳數相同

$$\therefore \frac{\mathbf{W}_{\text{\tiny ||}}}{\mathbf{M}_{\text{\tiny ||}}} = \frac{\mathbf{W}_{\text{\tiny ||}}}{\mathbf{M}_{\text{\tiny ||}}}$$
,得 $\frac{17}{\mathbf{M}_{\text{\tiny ||}}} = \frac{14}{28}$,即 $\mathbf{M}_{\text{\tiny ||}} = 34$ \therefore 選(D)

練習題

(1)	何阴时儿] 里子儿	`	0	
(-)				

(1)	碳酸鈣的質量為	克。
(1)	峽酸药的貝里 為	兄。

◎ 20 • 化學銜接教材

- 3. (A) 3 莫耳水; (B) 2 莫耳二氧化碳; (C) 3 莫耳氨氣; (D) 2 莫耳氫氣,試問:
 (1) 質量大小順序為____。
 (2) 原子數目多寡順序為____。

 4. 下列物質時為 1 克: (A) 即烷 (CH); (B) 急氣 (H); (C) 葡萄糖(CH)
- 4. 下列物質皆為 1 克:(A)甲烷(CH_4);(B)氫氣(H_2);(C)葡萄糖($C_6H_{12}O_6$);(D)二氧化碳(CO_2),試問:(原子量:H=1,C=12,O=16)
 - (1) 莫耳數大小順序為。
 - (2) 分子數目多寡順序為____。
 - (3) 原子數目多寡順序為_____。
- 5. 多氯聯苯是生活環境中的危險汙染物,具有下列的化學式: $C_{12}H_mCl_{10-m}$,若已知多氯 聯苯中含有 66.0%的氯,則化學式中 m 之值為多少?(原子量:Cl=35.5)
- 6. 某氣體在0°C、1 atm 下每升重 1.43 g,則此氣體分子量為若干?
- 7. 已知氧原子量為 16,則 10 個氧原子的質量為
 - (A) 10 amu (B) 16 amu (C) 160 amu (D) 6.02×10^{23} amu (E) $16 \times 6.02 \times 10^{23}$ amu .
- 8. 自然界中氣有 35 Cl 與 37 Cl 兩種同位素,其原子量 35 Cl 為 $^{34.97}$,存在百分率 $^{75.5\%}$,氯 的平均原子量為 $^{35.45}$,求 37 Cl 之原子量 。
- 9. 下列氣體在同溫、同壓且體積相同時,何者所含有的質量最大? (A) H_2 (B) CO_2 (C) NH_3 (D) O_2 。
- 10. 同溫、同壓、同體積,氣體甲與氣體乙的重量各為 0.60 克及 0.64 克。已知甲只由氧和 氮兩元素結合組成,乙分子量為 32,則甲氣體所含原子的總數約為若干?
- 11. 已知化合物甲與乙均含有 $A \setminus B$ 兩元素,測其組成發現:化合物甲中含 $A \equiv 14$ 克,含 $B \equiv 8$ 克;化合物乙中含 $A \equiv 7$ 克,含 $B \equiv 16$ 克,若甲的化學式為 A_2B ,則乙的 化學式為何?
- 12. 下列敘述何者符合「定比定律」之涵義?
 (A)氮與氫可形成穩定化合物: NH₃與 N₂H₄ (B)碳元素有 ¹²C 、 ¹³C 、 ¹⁴C 三種同位素 (C) 1 升的氫與 1 升的氯完全反應恰得 2 升氯化氫 (D)氧化鈣可由鈣燃燒而得,亦可藉碳酸鈣加熱後分解而得,其中鈣與氧之質量比恆為一定值。

解答Answer

 $1. (1) 46 \quad (2) 6 ; 1 \quad (3) 0.5 ; 3.01 \times 10^{23} \quad 2. (1) 200 \quad (2) 2 \quad (3) 6.02 \times 10^{24} \quad 3. (1) (B) > (A) > (C)$

 $> (D) \quad (2)(C) > (A) > (B) > (D) \quad 4. \ (1)(B) > (A) > (D) > (C) \quad (2)(B) > (A) > (D) > (C) \quad (3)(B) > (A) > (C) > (D) > (D)$

5. 2 **6.** 32.0 **7.** (C) **8.** 36.93 **9.** (B) **10.** 2.4×10²² **11.** AB, **12.** (D)

四、化學計量

- 1. 用以研究化學反應中定量關係。
- 2. 步驟:
 - (1) 寫出化學方程式, 並平衡之。
 - (2) 求已知物的莫耳數。
 - (3) 由平衡係數求出未知物的莫耳數。
 - (4) 換算成所求的量。
- 3. 限量試劑:
 - (1) 反應中完全被用盡的反應量,可以決定產物的產量,此種用盡的試劑稱為限量試劑。
 - (2) 理論產量:由限量試劑完全反應而得產物的量。
 - (3) 實際產量:因反應過程中,反應狀態不適,使反應物未完全用盡或產物處理過程中散失一些,此時實際所得的產量。
 - (4) 產量百分率: <u>實際產量</u> ×100 %

範例 16

水電解的化學方程式: $2H_2O \rightarrow 2H_2 + O_2$,如要收集 6 mol 的氣體,則需有多少克的水被電解?

解答:72

解析:由化學方程式知:電解 2 mol 水可得 3 mol 氣體 所以產生 6 mol 氣體,需 4 mol 水,共有 18×4=72(克)

範例(17)-

某碳氫化合物 1 莫耳完全燃燒,反應後可以得到 3 莫耳的二氧化碳及 72 克的水,試問該碳氫化合物的分子式應為何者?

(A) CH_4 (B) C_2H_6 (C) C_3H_8 (D) C_4H_{10} o

解答:(C)

解析:由係數比知 $C: H=3: \frac{72}{18} \times 2=3:8$

範例 18

將碳酸鈉晶體 0.572 克,加熱除去結晶水,可得到 0.212 克的無水碳酸鈉粉末。若碳酸鈉晶體的化學式為 $Na_2CO_3 \cdot xH_2O$,則 x 為下列何值?(原子量:H=1,C=12,O=16,Na=23)

(A) 10 (B) 2 (C) 8 (D) 3 .

◎ 22 • 化學銜接教材

解答:(A)

解析: Na₂CO₃·xH₂O → Na₂CO₃+xH₂O

$$Na_2CO_3: H_2O = \frac{0.212}{106}: \frac{0.572 - 0.212}{18} = 1: x$$

 $\therefore x = 10$

範例19

1000 mL 的氧氣,進行放電反應以產生臭氧。反應後,在同溫、同壓下,其體積變為900 mL,則其中臭氧所占的體積為若干 mL?

解答:200

解析:由化學方程式:3O₂→2O₃,同溫、同壓下體積比相當於莫耳數比

假設有 3x mL 的氧氣反應產生 2x mL 的臭氧

得 1000-3x+2x=900, x=100, 得臭氧的體積為 200 mL

範例 20

汽車的安全氣囊在汽車發生車禍時,會利用疊氮化鈉的高溫分解反應,迅速產生氮氣 $(2NaN_{3 (s)} \to 2Na_{(s)} + 3N_{2 (g)})$,以達到保護駕駛的目的。若在常溫、常壓下,要產生 73.5 升的氮氣,則需完全分解多少克的 NaN_3 ?(NaN_3 的分子量為 65.0 克/莫耳,常溫、常壓下理想氣體的莫耳體積是 24.5 升/莫耳)

解答:130

解析: $\frac{73.5}{24.5} \times \frac{2}{3} \times 65 = 130$ (克)

範例21)-

銀 10.8 克、硫化氫 3.4 克和氧 3.2 克混合,依 $Ag + H_2S + O_2 \rightarrow Ag_2S + H_2O$ (未平衡)

反應,求: (原子量:Ag=108,S=32)

(1)平衡化學方程式。(2)何者為限量試劑?(3)最多產生 Ag₂S 幾克?

解答: (1) 4Ag+2H,S+O,→2Ag,S+2H,O (2)銀 (3) 12.4

解析: 4Ag+2H,S+O, → 2Ag,S+2H,O

 $\frac{10.8}{108} \quad \frac{3.4}{34} \quad \frac{3.2}{32}$

=0.1 = 0.1 = 0.1

由係數比4:2:1,可知銀完全反應,所以銀為限量試劑

反應可生成硫化銀 0.05 mol=0.05×248=12.4 (克)

練習題

1.	不純的 CaC	O, 加熱完全分解成 C	CO ₂ 及CaO	,剩餘重量為原	原有之 0.67 倍,	則 CaCO ₃ 純
	度為若干?	(假設雜質不起作用	,原子量:	Ca=40) 答:	o	

- 2. 硬試管內盛有氯酸鉀 4.9 克及 2 克二氧化錳的混合物加熱使之反應,當重量變為 5.46 克時,試問氯酸鉀的分解百分率為若干? (分子量:氯酸鉀=122.5,原子量:Mn=55) **舀**:
- 3. 帶有結晶水的某化合物 1.26 克經加熱除去所有的結晶水後,其重量為 0.90 克,如無水物的分子量為 90,則在一莫耳的該化合物中,結晶水的莫耳數應為多少?

答:____。

- 4. 汽車常裝有安全氣囊,當強烈碰撞時,瞬間引起下列反應: $NaN_3 \rightarrow Na + N_2$ (注意此方程式尚未平衡),所產生的氣體快速充滿氣囊,可以達到保護車內人員安全的目的。已知 Na 與 N 的原子量分別是 23 與 14。若氣囊中置 65 克的 NaN_3 ,則當其反應後,於 STP 下可產生氣體為若干升?
- 5. 已知 $3Cu+8HNO_3 \rightarrow 3Cu(NO_3)_2+2NO+4H_2O$,則 150 mL 之 4 M 的 HNO_3 可以溶解 多少克的 Cu ? (原子量:Cu=63.5)

(A) 14 (B) 28 (C) 35 (D) 42 。

- 6. 濃度 3.4%的雙氧水 200 克中,加入 11 克的二氧化錳,完全反應後,能產生氧多少克? (原子量: Mn=55)
- 7. 已知鐵鏽之成分為 $(Fe_2O_3)_2 \cdot 3H_2O$,則每莫耳鐵原子生鏽後,重量將增加若干克? (原子量:Fe=56)

(A) 13.5 (B) 18.5 (C) 27.6 (D) 37.5 .

- 8. 某試樣含碳酸鈣與硫酸鈣之混合物 4.70 g,加熱時, $CaCO_{3 (s)} \to CaO_{(s)} + CO_{2 (g)}$,硫酸鈣不因熱分解,若其中 $CaCO_{3}$ 完全分解後,試樣固體剩 3.16 g,則原來混合物中 $CaCO_{3}$ 的重量百分率為多少?(原子量:Ca=40)
 - (A) 74.5% (B) 67.2% (C) 32.8% (D) 25.5% .
- 9. 某化合物 C_nH_{2n+1}COOAg 33.4 克燃燒後產生 21.6 克 Ag,則該銀鹽之化學式為何者?
 (A) CH₃COOAg (B) C₂H₅COOAg (C) C₃H₇COOAg (D) C₄H₉COOAg 。

1. 75% 2. 75% 3. 2 4. 33.6 # 5. (A) 6. 3.2 7. (D) 8. (A) 9. (A)

單元五 溶 液

一、溶液的意義

- 1. 溶液是由兩種或兩種以上的純物質均勻混合而成。
 - (1) 沒有一定的組成與性質。
 - (2) 溶液所含的各成分,仍保有各自的性質。例如:糖水,保有糖的甜味。
- 2. 溶質:溶液中被溶解的物質,或以量少者為溶質。
- 3. 溶劑:習慣上將形成溶液時相不改變者,或同相時量多者為溶劑。

二、溶液的分類

1. 依形態分類:

- (1) 氣態溶液:不同氣體可以任意比例互相混合,所構成的氣體溶液一般稱為混合氣體。例如:空氣、天然氣、瓦斯。
- (2) 液態溶液: 最常見的溶液, 一般所謂溶液指的多是液態溶液。
 - ① 氣體溶於液體。例如:CO,溶在水中。
 - ② 液體溶於液體。例如:潤滑油溶於汽油中。
 - ③ 固體溶於液體。例如:糖溶於水中。
- (3) 固態溶液:兩種以上的物質相互混合而成的一種均勻固體,有時稱為固溶體,由不同金屬所構成者稱合金。

2. 依溶質的顆粒大小分類:

- (1) 真溶液:溶質的顆粒直徑約 $1 \text{ Å} (10^{-8} \text{ cm})$,例如:糖水、鹽水。
- (2) 膠體溶液:溶質的顆粒直徑約 $10\sim1000~\text{Å}~(10^{-7}\sim10^{-5}~\text{cm})$,例如:牛奶、墨汁、醬油。

3. 依溶劑分類:

- (1) 水溶液:以水為溶劑,對生物體而言,水溶液最重要。例如:糖水、食鹽水、鹽酸。
- (2) 非水溶液:不以水為溶劑的溶液,例如:四氯化碳溶液、酒精溶液。
- (3) 物質和水混合形成溶液時,不論水量多寡,水均為溶劑。例如:酒精水溶液。

4. 依溶液導電性分類:

- (1) 電解質溶液:溶質為電解質,溶於水後可導電。例如:食鹽水、鹽酸。
- (2) 非電解質溶液:溶質為非電解質,溶於水後不可導電。例如:糖水。

範例(1)-

下列何者為溶液?

(A)空氣 (B)食鹽水 (C)汞 (D) 18K 金 (E)不鏽鋼。

解答:(A)(B)(D)(E)

解析:(C) 汞為元素,不屬於溶液。

範例 2

真溶液與膠體溶液的區別為何?

(A)溶質顆粒大小 (B)溶劑的種類 (C)温度的高低 (D)是否有一定的組成。

解答:(A)

三、電解質溶液

1、 定義: 固體不導電, 水溶液或熔融態會解離而導電的物質。例如:酸、鹼、鹽。

2. 分類:

- (1) 依物種分類:
 - ① 酸:只有在水溶液中,才會解離出 H⁺ 而導電。
 - ② 鹼:水溶液或熔融熊均可導電。
 - ③ 鹽:多數水溶液或熔融熊均可導電。
- (2) 依解離度分類:
 - ① 強雷解質:在水中幾乎完全解離者。

例如:1A 與2A 的氫氧化物,氫氧化鈹與氫氧化鎂例外。

鹽:所有的鹽,除難溶性以外。

酸: HClO4、HI、HBr、HCl、HNO3、H2SO4。

② 弱電解質:在水溶液中解離度較低者,大部分以分子態存於水溶液中,導電度 較低。例如:醋酸、苯甲酸、氫氧化銨。

3. 電解質導電的理由:

- (1) 電解質在固態中,因為陽、陰離子間的距離短,彼此間的引力大,而互相牽制結合在一起,不能自由移動,所以不能導電。
- (2) 電解質溶於水後,因為陽、陰離子間的距離變大,彼此間的引力變弱,可以自由游動,於是陰離子向正極移動,陽離子向負極移動,所以可以導電。
- **4.** 檢驗是否為電解質溶液的方法: (如右圖) 用燈泡明暗程度顯示電解質溶液的導電度, 進而判定電解質的強弱。

◎ 26 • 化學銜接教材

5. 電解質於水中解離出之陰、陽離子數不一定相同,但總電量相同,方可使溶液呈現電 中性。

範例 3

下列哪些為雷解質?哪些可導雷?

(A) H₂SO_{4(A} (B) NaCl_(s) (C) HCl_(g) (D) 石墨 (E) KI_(aq) (F) Na_(s)

(G) Cl_{2(g)}

 $\label{eq:cu_sol} \text{(H) } Cu_{(s)} \qquad \text{(I) MgSO}_{4(a\alpha)} \ \text{(J) Pb (NO}_3)_{2(a\alpha)}$

 $(K) C_2H_5OH_{(A)}$

(L) PCl_{5(A)} °

解答: 電解質: (A)(B)(C)(E)(I)(J); 導電: (D)(E)(F)(H)(I)(J)

範例(4)—

下列有關氫氧化鈣的敘述,何者正確?

(A)溶液中陰離子所帶的總電量是陽離子所帶總電量的兩倍 (B)因溶液屬於強鹼性,因 此溶液中並無 H⁺ 的存在 (C)因溶液可以導電,故氫氧化鈣是一種電解質 (D)溶液中 陰離子總數和陽離子總數相等。

解答:(C)

解析:(A) 總電量相同。

(B) 任何溶液中均有 H⁺,只是含量多或寡的不同。

(D) 由 Ca(OH), $\rightarrow Ca^{2+} + 2OH^{-}$ 可知負離子總數為正離子的兩倍。

四、溶液濃度及其計算

1. 重量百分濃度:

(1) 定義:100克溶液中所含有溶質的克數。

(2) 公式:

重量百分濃度 $(\%) = \frac{\overline{\text{溶質重}}}{\overline{\text{гарт}}} \times 100 \% = \frac{\overline{\text{гарт}}}{\overline{\text{гарт}}} \times 100 \% = \frac{\overline{\text{гарт}}}$

範例(5)-

100 克水中需加入多少克的葡萄糖,方可使溶液的重量百分率濃度為20%?

解答:25

解析: $\frac{x}{100+x} = \frac{20}{100}$, 得 x=25 克

範例 6

將硫酸銅晶體($CuSO_4 \cdot 5H_2O$)250 克溶於750 克的水中,則此溶液的重量百分率濃度為若干?

解答:16%

解析:結晶水屬於溶劑,所以硫酸銅重 $250 \times \frac{160}{160+90} = 160$

重量百分濃度=
$$\frac{160}{250+750} \times 100\% = 16\%$$

2. 體積莫耳濃度:

(1) 定義:1升溶液中所含溶質的莫耳數。

(2) 公式:

範例 7

比重為 1.4、重量百分濃度為 63% 的硝酸(HNO_3)溶液,求其體積莫耳濃度為若干 M?

解答: 14 M

解析:
$$C_{M} = \frac{n}{V} = \frac{\frac{63}{63}}{\frac{100}{1.4} \times \frac{1}{1000}} = 14 \text{ (M)}$$

範例 8

將比重為 0.90、30%的氨水加水稀釋成原來體積 8 倍,則其體積莫耳濃度變為若干?

解答: 2.0 M

解析: 設氨水原體積為 V mL, NH_3 的原子量=17

$$C_{M} = \frac{0.9V \times 0.3 \div 17}{8V \times 10^{-3}} = 2.0 \text{ (M)}$$

3. ppm:

(1) 定義:每10⁶克溶液中所含有溶質的克數,簡稱為ppm。

◎ 28 • 化學銜接教材

(2) 公式:

- (3) ppm 常用於表示微量物質的濃度。例如:空氣汙染物、微量元素的含量,如海水中的離子濃度。
- (4) 當計算百萬分濃度時,通常是設定稀薄溶液的密度為 1.00 g / mL,所以 ppm 也可 視為 1 L 溶液中,所含有溶質的毫克數。

範例 9—

5 升的水試樣,含有 0.16 克氧,試問該水含氧多少 ppm?

解答:32

解析: $\frac{0.16\times1000}{5}$ =32 (ppm)

範例 100-

若警方查獲的某假酒含有甲醇 5000 ppm(1 ppm 相當於重量比 10^{-6}),則該假酒每 $0.6\,L$ (相當於一瓶)中含有甲醇多少 mL?(甲醇和乙醇的密度都是 $0.78\,g$ / mL) (A) 1 (B) 3 (C) 5 (D) 6 。

解答:(B)

解析: $\frac{5000}{1000000} = \frac{x}{0.6 \times 1000}$: x=3 (mL)

4. 溶解度:

- (1) 定義:飽和溶液中所含溶質的量,稱為該溶質在該溫度下的溶解度。
- (2) 表示法:
 - ① 體積莫耳濃度:每升飽和溶液中,所含溶質的莫耳數。
 - ② 100 克溶劑中所能溶解溶質的克數。
- (3) 飽和溶液、未飽和溶液與過飽和溶液:
 - ① 飽和溶液:一定溫度下,溶液所溶解溶質己達最大量。
 - ② 未飽和溶液:溶液的濃度未達到此最大限度者,稱為未飽和溶液。
 - ③ 過飽和溶液:溶液的濃度超過飽和溶液者,稱為過飽和溶液。

範例 11)—

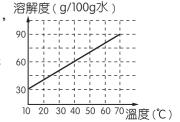
在 $50\,^{\circ}$ C 時,某物質的溶解度為 $150\,$ 克 / $100\,$ 克水,其飽和溶液 $100\,$ 毫升的重量百分率濃度為若干?

解答:60%

解析:一個溶液無論取出多少量,其濃度都不會改變

$$\therefore \frac{150}{100+150} \times 100\% = 60\%$$

範例 12)-


在 25 °C,CaCl₂ 在水中的溶解度為 7.5 M,此溶液相當於 100 克之純水中溶解 CaCl₂ 若干克?(設 CaCl₂ 飽和溶液的比重為 1.4)

解答:146.7

解析: $\frac{7.5 \times (40+71)}{1000 \times 1.4 - 7.5 \times (40+71)} = \frac{x}{100}$ $\Rightarrow x = 146.7 \quad (克)$

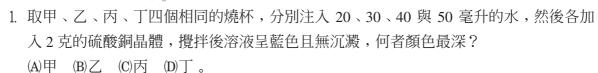
範例(13)———

右圖是某鹽類甲的溶解度對溫度曲線圖,已知甲的式量=45,請回答第(1)、(2)題:

(1) 在 $70\,^{\circ}$ C 下, $380\,^{\circ}$ g 之飽和溶液冷卻至 $10\,^{\circ}$ C 時,約可析 出甲物質若干 $g\,^{\circ}$?

(A) 60 (B) 75 (C) 90 (D) 120 。

(2) 在 40 °C 時,有 20%之未飽和溶液 125 g,若要使之成為飽和溶液,需再加入甲物質若干 g?


(A) 13 (B) 35 (C) 47 (D) 60 。

解答:(1)(D) (2)(B)

解析: (1) 令析出 x g, $\frac{180-x}{200} = \frac{30}{100}$, 得 x=120 g

(2) 令加入甲 x g ,
$$\frac{60}{100} = \frac{125 \times 20\% + x}{125 \times (1 - 20\%)} = \frac{25 + x}{100}$$
 , 得 x=35 g

練習題

2. 比重 1.84、重量百分濃度 98%之硫酸水溶液,其體積莫耳濃度=______ M 。

◎ 30 • 化學銜接教材

3. 某化學工廠廢水中之 Cd^{2+} 的重量百分率為 0.05%。此廢水中之 Cd^{2+} 含量應為多少 ppm?

(A) 5 (B) 50 (C) 500 (D) 5000 o

- 4. 甲、乙兩杯的容量相同,甲杯中盛滿均勻的糖水,若由甲杯倒一半的糖水倒入乙杯中, 再加水到乙杯至滿;此時有關甲、乙兩杯溶液的敘述,下列何者正確? (A)兩杯中所含糖的分子數目相等 (B)兩杯所含總分子數目相同 (C)兩杯糖水的濃度相 同 (D)兩杯水的重量相同。
- 5. $5 \, \mathrm{M}$ 的鹽酸 $4 \, \mathrm{H}$,取出 $100 \, \mathrm{\[nabla} \mathrm{H}$,加純水 $400 \, \mathrm{\[nabla} \mathrm{H}$,試問稀釋後溶液的濃度變為 M 。
- 6. 下列何者是液體氣態溶液? (A)煙 (B)牛奶 (C)霧 (D)青銅。
- 7. 200 毫升的硫酸溶液中含硫酸 39.2 克,今再加入 300 毫升的 6 M 硫酸溶液,則混合後的溶液濃度為 M。
- 8. 在 16 °C下,將 50 克的食鹽放入 60 克的水中,充分攪拌後,發現有部分食鹽未溶解, 過濾後,將濾紙上的固體乾燥,稱得質量為 30 克。則 16 °C 時,食鹽在水中的溶解度 為_____%。
- 9. 比重 a、重量百分率濃度 b%之硫酸水溶液,求莫耳濃度= M。
- 10. 下表為不同溫度下,硝酸鉀的溶解度,根據此表,下列敘述何者正確?

溫度 (°C)	20	40	60	80
溶解度(克 / 100 克水)	32	64	110	169

(A)溫度愈高,溶解度愈小 (B) 4 克的硝酸鉀可完全溶在 10 克 20 °C 的水中 (C) 40 °C 的飽和硝酸鉀降溫到 20 °C 時有固體析出 (D) 60 °C 時,飽和硝酸鉀溶液的重量百分 濃度為 50% 。

11. 某檢體中含有 45 ppm 的鎘,試問其體積莫耳濃度為若干? (原子量: Cd=112.4)


答:_____。

解答 Answer

1. (A) 2. 18.4 3. (C) 4. (A) 5. 1 6. (C) 7. 4.4 8. 25% 9. $\frac{5ab}{49}$ 10. (C) 11. 4×10^{-4}

翰林版 無敵高中 化學銜接教材

編 著 者:潘貞志

企畫編輯:簡玉蘭

責任編輯: 史燕玲・黄冠融

美術編輯: 林淑惠 書: 鄧玉芬

封面設計:萬千慧 視覺總監: 劉曉燕 發 行 人:陳炳亨

出 版 者:翰林出版事業股份有限公司 出版登記:新聞局局版臺業字第 5853 號 印 刷 者:翰林出版事業股份有限公司

電話: (06)2619621 傳真: (06)2636138

營業總部:70248臺南市新樂路76號(安平工業區)

電話: (06) 2631188 傳真: (06) 2640416

勘誤網址: www. worldone. com. tw

教材諮詢專線: (06)2619621 # 344 黃冠融

有著作權 翻印必究

▮ 全國服務中心

■北區(臺北、基降、花蓮、金門)

地址:23585臺北縣中和市建一路136號9樓

■桃竹區(桃園、新竹)

地址:32455 桃園縣平鎮市興埔路232-2號 電話: (03)4688066 傳真:(03)4688120

■雲嘉區 (雲林、嘉義)

地址:60085 嘉義市國賢一街38號

電話: (05)2812656~7 傳真: (05)2312415

■中區(臺中、苗栗、南投、彰化)

地址:40854臺中市東興路一段486號(國小) 地址:40854臺中市東興路一段480號(國中) 地址:40854臺中市東興路一段488號(高中) 電話:(04)24732018 傅眞:(04)24734074

■南區(臺南)

地址:70248 臺南市新樂路76號

■高屏區(高雄、屏東、臺東、澎湖)

地址:80794高雄市民族一路373巷15號

▋▋劃撥購書服務

郵 政 劃 撥:31376678 翰林出版事業股份有限公司

劃撥查詢專線: (06)2637923 傳真: (06)2645852

讀者服務專線:0800-007678

讀者訂書專線:(06)2637923 傳真:(06)2645852

客服專用帳號:service@hanlin.com.tw

劃撥收據上請註明您的姓名、地址、電話、購買書籍, 傳真劃撥收據至翰林南區服務中心,收到傳真後,會以 限時掛號寄出,約2~3天可收到書(不含例假日)。

郵資:一本65元,二本以上75元。

●本公司已盡力完成著作權授權使用等問題,倘若有疏漏,請著作權持有人或知悉者與本公司編輯人員聯絡。

本書如有內容錯誤、缺頁、倒裝、整頁漏印、嚴重汙損等情形,請接受本公司誠摯的道歉;並請撥讀者免費服務專線: 0800-007678 告知,我們將迅速爲您服務。

